PhaseAnalyzer#

class VSPEC.PhaseAnalyzer(path, fluxunit=Unit('W / (um m2)'))#

Bases: object

Class to store and analyze VSPEC phase curves

Read all the data produced from a phase VSPEC curve simulation. This class also includes some basic-but-powerfull analysis methods meant to be quickly used to create nice figures.

Parameters:
  • path (pathlib.Path or str) – The path to the directory storing all the final output. This is usually .vspec/.../AllModelSpectraValues/

  • fluxunit (astropy.units.Unit, default=u.Unit('W m-2 um-1')) – Standard unit to use with flux values. This way they are safely converted between Quantity and float

Examples

>>> model = ObservationModel.from_yaml('test.yaml')
...
>>> data = PhaseAnalyzer(model.directories['all_model'])
>>> plt.plot(data.time, data.lightcurve('total', 0))

Attributes Summary

fits

Covert to an astropy.io.fits.HDUList object

Methods Summary

from_model(model[, fluxunit])

Initialize a PhaseAnalyzer instance from a VSPEC ObservationModel.

get_layer(var)

Get data from layer variable.

lightcurve(source, pixel[, normalize, noise])

Produce a lightcurve

spectrum(source, images[, noise])

Get a 1D spectrum

to_twocolumn(index, outfile[, fmt, wl])

Write data to a two column file that can be used in a retrival.

write_fits(filename)

Save PhaseAnalyzer object as a .fits file.

Attributes Documentation

fits#

Covert to an astropy.io.fits.HDUList object

Returns:

Data converted to the .fits format

Return type:

astropy.io.fits.HDUList

Methods Documentation

classmethod from_model(model: ObservationModel, fluxunit=Unit('W / (um m2)'))#

Initialize a PhaseAnalyzer instance from a VSPEC ObservationModel.

Parameters:

Examples

>>> model = ObservationModel.from_yaml('test.yaml')
...
>>> data = PhaseAnalyzer.from_model(model)
>>> plt.plot(data.time, data.lightcurve('total', 0))
get_layer(var: str) astropy.units.Quantity#

Get data from layer variable.

Access the self.layers attribute and return the result as a astropy.units.Quantity object for a single variable.

Parameters:

var (str) – The name of the variable to access

Returns:

They layering data of the requested variable

Return type:

astropy.units.Quantity

Raises:

KeyError – If self does not have any image data or if var is not recognized

lightcurve(source: str, pixel: int | Tuple[int, int], normalize: str | int = 'none', noise: bool | float | int = False)#

Produce a lightcurve

Return the lightcurve of source of the wavelengths described by pixel

Parameters:
  • source (str) – Which data array to access.

  • pixel (int or 2-tuple of int) – Pixel(s) of spectral axis to use when building lightcurve.

  • normalize (str or int, default='none') – Normalization scheme. If integer, pixel of time axis to normalize the lightcurve to. Otherwise it is a keyword to describe the normalization process: 'none' or 'max'

  • noise (bool or float or int, default=False) – Should gaussian noise be added? If float, scale gaussian noise by this parameter.

Returns:

Lightcurve of the desired source in the desired bandpass

Return type:

astropy.units.Quantity

Raises:
  • ValueError – If noise is not bool, float, or int

  • ValueError – If normalize is not recognized or True

Warns:

RuntimeWarning – If normalize is False

spectrum(source: str, images: int | Tuple[int, int], noise: bool | float | int = False)#

Get a 1D spectrum

Return the spectrum of a specified source at a single epoch or average over multiple epochs.

Parameters:
  • source (str) – Which data array to access. If ‘noise’ is specified, use propagation of error formula to calculate theoretical noise of spectrum.

  • images (int or 2-tuple of int) – Pixel(s) of time axis to use when building spectrum.

  • noise (bool or float or int) – Should gaussian noise be added? If float, scale gaussian noise by this parameter.

Returns:

Spectrum of the desired source over the desired epoch(s)

Return type:

astropy.units.Quantity

Raises:

ValueError – If noise is not bool, float, or int

to_twocolumn(index: int | Tuple[int, int], outfile: str, fmt: str = 'ppm', wl: str = 'um')#

Write data to a two column file that can be used in a retrival.

Parameters:
  • index (int or 2-tuple of int) – The index of the epochs to consider. Passed to self.spectrum.

  • outfile (str) – The name of the output file

  • fmt (str) – The format of the output file. Either 'ppm' or 'flambda'.

  • wl (str) – The wavelength unit of the output file. Passed to astropy.units.Unit.

Return type:

None

Raises:

ValueError – If fmt is not 'ppm' or 'flambda'.

write_fits(filename: str) None#

Save PhaseAnalyzer object as a .fits file.

Parameters:

filename (str)